
Archaeological Applications of Fuzzy Databases 
 

Franco Niccolucci1 – Andrea D’Andrea2 – Marco Crescioli3 
 
 
 
Contents 

Abstract............................................................................................................................................................................... 1 
1. Quantitative applications and archaeological theory ...................................................................................................... 1 
2. Databases and archaeological theory .............................................................................................................................. 2 
3. The case study ................................................................................................................................................................ 4 
4. Fuzzy set concepts .......................................................................................................................................................... 5 
5. Fuzzy entities in the case study....................................................................................................................................... 6 
6. Operating in the database with fuzzy entities ............................................................................................................... 10 
7. Implementing the fuzzy database ................................................................................................................................. 11 
8. The web interface to the database................................................................................................................................. 12 
9. Archaeological application to the case study................................................................................................................ 14 
10. Conclusions ................................................................................................................................................................ 16 
References ........................................................................................................................................................................ 17 
 
Abstract 

This paper deals with problems concerning statistical data (e.g. deriving from archaeometry) in an archaeological 

database, when an unaware use may lead to erroneous conclusions. A new model is proposed for these cases, using 

fuzzy logic to assign a reliability coefficient to imprecise attributes. Considering a case study, we generalize the 

assignment of age, gender and chronology to burials. The procedures are general and can be fruitfully used also in other 

investigations. To manage these fuzzy attributes, we personalized a free Relational Database Management Systems 

(RDBMS) and created a WWW interface to ease data consultation and allow remote access. 

 

1. Quantitative applications and archaeological theory 

In a recent paper (Barceló 2000), J. Barceló wisely pointed out that the applications of computers to archaeology have 

arrived at an elevate level of complexity, often characterized by sophisticated and expensive techniques, but such 

resources are still not fully exploited for their investigation potential, notwithstanding the goals achieved especially in 

spatial technologies and virtual reality applications. For the Spanish scholar, the low use of these advanced computer 

technologies in archaeological research derives from the fact that we are not able to ask questions complex enough for 

so complex instruments and therefore archaeological results still lack. 

Pursuing the application in archaeology of the most recent hardware solutions and of the most promising 

software developments, produced by research or by the market, often generates technical systems, which are efficient 

and reliable but are not accompanied by an adequate level of theoretical and methodological reflection. 

Behind a shiny technological apparatus it is often hidden a preoccupying trivialisation, caused by the absence 

of reflection on the impact of the use of advanced technology on the process of historical knowledge. However, critical 

elements pervade the archaeological use of virtual reality and emerge also towards inter-site GIS systems, oriented only 

to environmental variables and therefore deterministically biased. Stating the importance of the connection between the 

improvement of computer applications and archaeological research, Harris and Lock pointed out that a GIS system is 
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not impartial or neutral: it “ represents the social reproduction of knowledge and, as such, the development of a GIS 

methodology cannot be divorced from the development of the theory needed to sustain it” (Harris and Lock 1995:355). 

Very recently, a similar attention to a correct definition of the correlation between techniques and interpretative 

processes seems to characterize also mathematical and statistical applications. These have been for a long time the main 

quantitative application in archaeology and now they seem to undergo a new growth, after a decline due to the crisis of 

the processual approach, which had represented their theoretical and methodological basis (Moscati 1996). 

 

The recent contribution of quantitative methods (Buck, Cavanagh and Litton 1996; Delicado 1999) such as 

non-parametric statistics, Bayesian statistics and fuzzy theory, certainly helped to invert the negative trend that had 

characterized quantitative archaeology around the middle of the eighties under the post-processual criticism (see, for 

instance, Hodder 1982). Perhaps the negative reaction to the use of statistics to support interpretation may have 

generated a new relationship between archaeology and mathematics. 

A new quantitative approach is based on evaluating the impact of statistical-mathematical models on carrying 

on archaeological research (Moscati 1996; Voorrips 1996; Wilcock 1999), not only as far as data analysis and 

classification is concerned, but also in formalizing procedures and in the use of statistical sampling techniques. Thus, 

the post-processualist image of the computer as a neutral instrument sides with the New Archaeology vision of it as an 

objective meter of historical and human facts and behaviours: both these approaches, only apparently opposed, in fact 

converge to the same negation of the importance of computers in archaeological theory and method. Taking in no 

consideration the deep connection between computational methods and their impact on archaeological theory leads 

inevitably to a cul-de-sac: the blind pursuit of the “discovery” of “innovation” and novelty without understanding the 

function of the proposed solution in the process of historical and archaeological investigation, and the consequent 

inability of going beyond the proposal of toys, which so often are as expensive as useless. 

Hopefully a different approach, as the one we suggest for fuzzy theory, may represent a useful step to envisage 

a new and more promising relationship between archaeological theory and practice and the use of models deriving form 

other disciplines (Crescioli, D'Andrea, Niccolucci in press). In our opinion, it is not correct to choose a quantitative 

technique only because it seems to fit better with the current investigation, since this attitude produces inevitably a 

mechanic, and unreflective, application of quantitative techniques that may lead to erroneous conclusions. By choosing 

a technique, we must bear in mind that in this way we are making a cognitive choice that will reflect on data and results. 

Fuzzy theory reminds us continuously that during an investigation we make choices that are determinant to formalize 

data but leave no sign in the interpretative process, so that raw data and hypothetical or reconstructed information 

become unscindible: the more the formalism used for data analysis is hidden, as in computer applications and, in 

particular, in database applications, the bigger it is the risk of overwhelming the original information content of data 

with the subjective meaning of interpretation. 

 

2. Databases and archaeological theory 

The huge amount of data that characterize any archaeological investigation and the pervasive presence of computers in 

every aspect of present life have ultimately led to a generalized use of DBMS’s (Data Base Management Systems) to 

manage excavation data as well as any other kind of archaeological records. It appears nowadays quite natural to store 

and search archaeological information into a computer memory, due to the highly structured nature of forms used to 

record them, a condition that perhaps precedes the advent of computers but certainly is enforced by their use. These 

tools undoubtedly have a great importance in easing archaeological data management and the synthesis process, so that 
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nowadays even the most conservative educational institutions cannot any more exclude some database training from 

archaeologists’ curricula. Using DBMS has thus become a part of current archaeological practice and little attention is 

therefore paid to its implication on the correctness of data. Sometimes this is due to an excessive confidence in 

automatic processing, sometimes it is the ignorance of simple statistical laws about error propagation that may induce to 

false conclusions, that moreover have the aspect of indisputable truth since they have been produced by a machine, 

which by assumption makes no mistake in computations. After they have been recorded into a database, archaeological 

records loose any element of uncertainty and subjectivity and become as trustworthy as the computer itself. 

 

This consideration should not imply a luddist rejection of computers, which by the way are not guilty of the 

wrong results, but simply the awareness that computations on uncertain data follow rules that differ from ordinary ones, 

with or without a computer; even the simple act of counting is no more the same. In other words, since archaeological 

data have an intrinsic uncertainty, any conclusion drawn basing on them cannot ignore elementary statistical rules, 

including the paradox that 1 + 1 not always makes 2. 

In fact, every time you recognize something there is some uncertainty in the attribution and if you repeat this 

process several times, as it happens for instance when classifying archaeological finds, errors associated to each item 

add up, giving a total error that in some cases may be unacceptable. 

In most cases one can ignore this feature, because the error is so small that deterministic rules and statistical 

rules in practice do not differ: however, this should not be given for granted in every case. 

This reasoning has particular implications when using a DBMS to record data. Usually this is accomplished by 

crossing boxes, or filling fields according to standardized dictionaries, and there is no space for uncertainty or doubts. 

One has to decide to cross the box labelled “black” or the one labelled “white”, with no possibility of grey. Then alea 

iacta est, the die is cast, and that choice will obliterate forever the real archaeological record and will be processed with 

many similar ones, possibly thousands of them as it happens when managing finds from an excavation. The computer, 

in its cold assurance, will keep no track of the archaeologist’s human hesitation. 

Thus the subjective attribution is unconsciously objectivized and different levels of reliability are equalized to 

absolute certainty by the magic of computers. Should we not introduce an alert that some of the data are “more 

subjective” than others and even the archaeologist who originally interpreted them, trusted them at different degrees? 

Probably yes, and it is a common practice to mark by interrogation marks less reliable attributions. But interrogation 

marks are difficult to process, and in no way supported by DBMS. So our proposal aims at introducing some attributes 

that make evident the reliability of data, and a few simple and transparent rules to process them. 

Ignoring the problem of data reliability is still worse when they are derived from statistical processing. This 

happens when archaeology uses the results of other scientific techniques, as in archaeometry, and our case study will 

illustrate one such example. 

In conclusion, databases are very useful in recording archaeological data and using them in every day’s 

archaeological practice is an achievement that should be not discussed. But a naive use may lead, in a few cases, to 

incorrect conclusion, that can be prevented with some simple technical improvement. Our contribution hopefully moves 

towards this perspective, by simply quantifying (in an absolutely subjective way) how much the compiler of the 

database trusted the data, and consequently giving some reasonable rules to process this reliability coefficient through 

all the computations the database is used for. It must be pointed out that the numeric nature of this reliability coefficient 

should in no way be interpreted as an “objective” measure of the uncertainty but only an expression of the compiler’s 

reliability subjective evaluation. Therefore, it should be clearly stated in the accompanying documentation the meaning 
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of different numeric values, and how they are computed when the coefficient derives from computation, as it will 

happen in our case study. 

Together with other practices, as the generalized disclosure of archaeological databases to the public, this 

approach will moreover contribute to guarantee the correctness of application of the scientific method, which requires 

the possibility of tracking back, at least in theory, the inference of results from data, beyond the “black box” of the 

database. 

 

3. The case study 

The present paper considers the data resulting from a sample of burials discovered in the cemetery of Pontecagnano, an 

important Etruscan-Campanian settlement placed about 70 Km South of Naples. The funerary area, extending below the 

modern centre, in over than forty years’ investigations produced more than 100 burial nucleuses and more than 8000 

tombs dating between the First Iron Age (9th century BC) and the Hellenistic period (beginning of the 3rd century BC). 

To manage the huge quantity of finds, the archaeological team is carrying on a GIS project since some years (D’Andrea 

1999). The project consists of a cartographic database, implemented with Mapinfo, whose main function is to place 

exactly the ancient remains on modern cartography and to store topologic, spatial and alphanumeric data of each tomb 

and burial area. 

The burials examined in the present paper pertain to the most recent phases of use of the Etruscan-Campanian 

cemetery. They were edited by Serritella (Serritella 1995) in a volume which includes the philological study of grave-

goods, the analysis of most significant pottery production and, above all, the reconstruction of the ancient community of 

Pontecagnano in the 4th and 3rd century BC starting from the analysis of funerary customs. The tombs studied by 

Serritella are distinct from the remainder of the cemetery and insist upon free surfaces, not occupied in previous 

periods, thus constituting a privileged observatory for the study of the society of the Hellenistic period. Of all the tombs, 

65% had grave-goods in them, while the remaining 35% did not, including about 7% which had been certainly violated 

in ancient time.  

In order to examine the funerary behaviours, the author uses the analysis of pottery and burial typology and, 

moreover, the results obtained determining the gender and age of the deceased by classical anthropometric methods 

(Scarsini and Bigazzi 1995; Petrone 1995). These are based on statistical values that may be obtained with different 

procedures, giving as results different numeric coefficients. In particular, the gender coefficients vary within a range 

from +2 and –2: positive values refer to male gender, the negative ones to females.  Unfortunately, most of the values 

do not reach these extremes: only 11 are outside (–1, +1), that is about 20% of the cases for which an osteological 

coefficient can be evaluated and 13% of all cases, so for most cases the level of uncertainty is rather high. 

Notwithstanding the uncertainty of the palaeo-anthropological results, obtained with a statistical computation 

applied to the dimensions of each skeleton, the tables that compare grave-goods, gender and age, to reconstruct the 

horizontal stratigraphy (age classes) and the vertical stratigraphy (social status) of burial areas, do not show the 

variability of anthropological determinations. So the statistical information turns into certain data. 

Correctly, the publication gives all the details of the anthropological analysis so that the reader may check the 

scientific results, but all this is irreparably lost when data are stored in a database. 

To circumvent this drawback, our proposal suggests to use the statistical information already available to keep 

the coefficient variability within data structure, by creating special attributes and showing how to process them.  
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To this aim, we have analyzed the frequency distribution of the osteological coefficients obtained in the case 

study, dividing [-2, 2] into intervals of length 0.1. It should be expected to obtain a bi-modal distribution, with peaks 

corresponding to the two most frequent values denoting males and females.  

The histogram of this frequency distribution is shown in figure 1. 
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Figure 1 – Frequencies of gender coefficients 

As it can be easily verified from figure 1, the distribution of gender coefficients is only roughly bimodal: the 

male modal value is +1, while female coefficients have no mode. Moreover, even adding the frequencies of modal 

values and the nearest neighbours, the total does not reach 30%. 

Probably such characteristics may be influenced by the choice of the interval width: using 0.2 instead of 0.1 

gives in fact a better double-bell-shaped curve (with still low frequencies of the modal values) but it confirms that 

discriminating the gender by means of osteological coeffcients is not a straightforward task .  

 

4. Fuzzy set concepts 

We are not going to deal in detail here with fuzzy theory, referring for further details to Crescioli, D’Andrea and 

Niccolucci (in press) and the bibliography included. It will suffice to remind that, given a set A, a fuzzy entity is the 

couple formed by a variable X having values x in A and a function fX from A to [0, 1], so that to any instance x of X it is 

associated a number fX (x) in [0, 1], which can be interpreted as the degree of reliability of x, and will therefore be 

named in the sequel the (fuzzy) reliability coefficient attached to x while f will be named the (fuzzy) reliability 

function. So, a fuzzy entity extends the concept of variable by adding these reliability coefficients. 

In particular, a fuzzy label is such a couple, the first one assuming nominal values (the labels). For instance, 

fuzzy gender is a fuzzy label, with nominal values “male” and “female”, each one having a number attached, the fuzzy 

reliability coefficient of the assignment.  

A fuzzy value is another kind of fuzzy entity, in which the first element of the couple, the variable, has a 

numeric range. Fuzzy age is such, being formed by a possible range of ages, each one having a corresponding fuzzy 

reliability coefficient. 

Fuzzy labels can be fully described as arrays, having the labels in the first column and the corresponding 

reliability coefficients in the second. Fuzzy values can be represented in the same way if the range of possible values is 

finite; otherwise a function from A to [0, 1] is needed. A typical form of the function is trapezoidal as shown in figure 2. 

 
Figure 2. Graph of a trapezoidal fuzzy reliability function f  
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Also the concept of equality needs an extension to operate with fuzzy entities.  

We first introduce the similarity s(x) between the fuzzy entities X and Y, respectively with fuzzy reliability 

functions f, g, defined over the same domain A, which is the (numerical) function  

s: A → [0, 1]: s(x) = min (f(x), g(x)), x ∈ A. 

A graphical representation of s(x) is the following, in which it is assumed that X and Y are fuzzy values so that 

A is a numerical set, and both f and g have a very simple, trapezoidal form shown in figure 3. 

 
Figure 3. Graph of similarity function s (heavy line) and value of X ~ Y (marked point) 

To compare globally the two fuzzy entities X and Y, the maximum of s over A is taken: in this way, we define a 

fuzzy operator, that is a function associating a number in [0, 1] to each couple of fuzzy entities. We shall use the 

symbol ~ to denote this operator, called fuzzy equal to. In the previous picture, the value of X ~ Y is given by the 

ordinate of the marked point in figure3. 

The rationale of this definition depends on the interpretation of the fuzzy reliability function: taking the 

minimum of the two functions means that for each possible value in A we consider the worst condition for each fuzzy 

entity, but globally speaking, the most likely situation corresponds to the greatest of these values. The equality of the 

two items may derive from being both “male” or, independently, both “female”: so the reliability of the equality, 

regardless of what case determines it, is larger than the reliability of each single case, which adds confidence to the 

overall reliability. A prudential approach will give for the reliability of each case the minimum of the two reliability 

coefficients, and the overall reliability will equal the greatest of the two, with no additional contribution from the other. 

For another example, consider two disjoint age intervals X and Y: strictly speaking, there is no equality between them, 

since the parts in which they have a reliability of 1 are disjoint, but both have overlapping tails in which they are less 

likely, however not impossible: the common value where they have the highest likelihood is the marked point of figure 

3.  

The definition of fuzzy equality is an example of generalization to fuzzy entities of familiar concepts as 

equality, counting, adding, averaging, and so on. We are not going to deal with these concepts any more: only counting 

fuzzy quantities will be taken into account in this paper. To count occurrences, that is to compute frequencies, we need 

to generalize the familiar operation of counting, that is adding one when the desired result comes out (for instance, 

“female” when counting gender occurrences) and adding zero, instead, when it does not (that is, the result is “male”). In 

our generalized model, we shall total the fuzzy coefficients for each case, so that the count of each possible outcome 

will be the sum of the fuzzy coefficients. This agrees with common sense weighting in average evaluation and is also a 

particular case of a more general “Extension principle” (see Yager and Filev 1994:16-18). 

 

5. Fuzzy entities in the case study 

In the case study, three attributes have been recognized as fuzzy entities: gender and age of the deceased, buried in the 

tomb, and the chronology of the burial.  

Gender may be considered as a fuzzy label, as stated before, while age and chronology are fuzzy values. For 

each one of these fuzzy entities we shall briefly explain how to evaluate the second member of the couple, the reliability 
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coefficient: for fuzzy gender, this will imply the evaluation of two numbers, one for each gender, based on the 

osteological coefficient, while the other two attributes require the definition of a function, as shown below. 

 There are several (in fact, infinite) possible ways to assign numerical values to the gender coefficients; the one 

we choose are based on the following considerations: 

• In this case study, few osteological coefficients (less than 20%) go beyond +1 or –1, which can be considered the 

best possible results in these conditions. 

• When the male coefficient gets its highest value, the female one should get the lowest, and vice versa. 

• When the osteological coefficient varies between –1 and +1, the corresponding fuzzy gender coefficient increases 

(or decreases) uniformly. 

 

So, denoting by k the osteological coefficient and by m and f the male and female corresponding gender 

coefficients, to derive m and f from k we can build the function shown in table 1 or, graphically, in figure 4. 

k m f 

(–2, –1) 0 1 

(–1, +1) 0.5k + 0.5 –0.5k + 0.5 

(+1, +2) 1 0 

Undefined 0.5 0.5 

Table 1. Derivation of m and f (reliability gender coefficients) from k (osteological coefficient). 

 

 
Figure 4. Derivation of m (left, ordinates) and f (right, ordinates) from k (abscissae) 

Thus we are able to obtain the fuzzy gender coefficients for each item from the value of its osteological 

coefficient. The resulting fuzzy gender attribute will be an array as already noted, for instance {(male, 0.8), (female, 

0.3)}.  

Notice that, even if there is, in general, no mutual dependence between m and f, the definition we chose implies 

that m + f = 1. 

There are some cases in which the value of k is undefined since there were no elements enough to apply the 

osteological method. In these cases, our choice is to assign a value of 0.5 to each of the gender coefficients, that is m = f 

= 0.5. This assignment is based on the fact that the gender of the deceased is undecidable on the known elements, so 

that both gender are equally likely (or unlikely). The disadvantage of this choice is that the difference, if any, between 

the case of k = 0 and k not computable is lost, so somebody could prefer a different assignment as, for instance, m = f = 

0. We really see no relevant loss on information and the method applies with both choices, so the one we adopted will 

have no consequence on the model validity. 

The osteological determination of age ranges is based on two different methods, producing in several cases 

conflicting results, as in the case of tomb 4046 (Scarsini and Bigazzi 1995:139, Tab.1a) for which the two estimates are 

respectively of 50 ± 2 years and 20 – 25 years.  
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While the results of the second method are given in the form of a range with no other information, for the first 

one the authors publish (Scarsini and Bigazzi 1995:139-140) the central value µ and the standard deviation σ, so it is 

reasonable to assume that estimated ages have a Gaussian distribution with mean µ and standard deviation σ as given in 

the paper. Since the area below the Gaussian curve between µ – σ and µ + σ equals 68% of the total area (see any text 

on statistics, for instance Mood, Graybill and Boes 1979), we may conclude that the estimated age values between µ – σ 

and µ + σ are the most probable and hence the most reliable, with a tail, on both sides, having lower probability. In 

terms of reliability of the result, we may therefore assume that this is the highest for the values within [µ – σ , µ + σ], 

decreasing to zero outside; to keep things simple, the usual trapezoidal shape may be used, so that the reliability 

coefficient will be 1 within [µ – σ , µ + σ], going to 0 at µ – σ  – θ  and at µ + σ  + θ, θ being a positive number. In 

order to estimate θ, the table of the normal distribution tells us that when θ = 0.5σ, 7% of the area is left out on each 

side; for θ = 0.64σ, the remainder is 5%; for θ = 1.33σ it is 1% and so on, the last two values being those normally used 

for confidence intervals in hypothesis testing. The choice among these possibilities is subjective, and prudentially we 

went for θ = 0.5σ, considering unreliable those cases that have a probability less than 0.07. Since the age range has a 

width of 2σ, this means that in our trapezoidal approximation, we allow for a slack of 25% of the length of the 

estimated age interval, on each side of it, assigning a fuzzy function with value 1 on the interval determined by 

osteology, which descends to 0 on both sides with constant slope. The same rule will be applied to the second 

osteological method. 

For instance, an osteological estimate of the age range as 20 – 40 will correspond to the fuzzy age represented 

by the function shown in figure 5 and  explained in table 2. 

 
Figure 5. Fuzzy age coefficient (example for the age range 20 – 40) 

 

Age x Fuzzy coefficient 

< 15 0 

15 ≤ x < 20 0.2x – 3  

20 ≤  x < 40 1 

40 ≤  x < 45 –0.2x + 9 

45 ≤ x 0 

Table 2. Relationship between the fuzzy age coefficient and age (example for the age range 20 – 40) 

 

The general formula for f in terms of k, µ and σ can be easily computed from the above rule and results as 

shown in figure 6: 
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Figure 6 Fuzzy coefficient f as a function of the mean µ and the standard deviation σ  of the estimated osteological age 

 

When the osteological investigation gives two distinct, not overlapping ranges for the age, they will correspond 

to a fuzzy reliability function built considering the two separate parts as distinct reliability functions f(x) and g(x) and 

defining their fuzzy OR as follows: 

f OR g (x) = max (f(x),g(x)) 

with the graph shown in figure 7. 

 
Figure 7. Graph of fuzzy OR (heavy line) 

 

This set of rules implies that to wider age intervals it corresponds a greater uncertainty and consequently a 

larger slack and has other consequences that are worth considering. 

Let us consider two cases, the first one with an osteological age range of 22 – 30 years and the second with a 

range of 23 – 39: which one should be considered “younger”? Intuition says the first one, but this is not true. Since the 

ranges have a statistical nature, there are tails for both, that our cautious assumption determines in 2 years for the first 

one and 4 years for the second one (traditional statistical assumptions would have fixed them in 2.56 years and 

respectively 5.12 years, at a confidence level of 5%, and even larger for a confidence level of 1%). This implies that the 

complete age range (with tails) is 20 – 32 for the first case and 19 – 43 for the second: who is “younger”, now? 

This simple example shows that our common sense reasoning may be fallacious and new categories need to be 

introduced even for simple comparisons, which loose any significance when applied to statistical data. 

As far as chronology is concerned, in this context nominal constants had been used, as usual, for instance “First 

quarter of 4th century BC”, meaning the time interval [–400, –375]. 

Each of these has therefore been converted into a fuzzy value, with a fuzzy coefficient given in the usual 

trapezoidal for each time range, that is equal to 1 for the corresponding time interval and a tail δ on each side, on which 

the fuzzy reliability coefficient varies uniformly from 0 to 1 or vice versa.  

Again, several choices are possible for δ and candidates are 6.25 years (25% of the range as for age), 8 years 

(32% of the range, corresponding to a confidence statistical level of 0.1) 16.625 years (66.5% of the range, 

corresponding to a confidence statistical level of  0.01). We choose 15, the rounded value next to the latter, to express 

the high degree of indeterminacy, in numerical terms, of the chronological traditional assignment, which leaves more 

space for tail values outside of the interval. this is equivalent to assume a slack of 60% of the time range length. Figure 

8 shows an example. 
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Figure 8 Fuzzy chronology with a slack of 15 years (example). 

 

It might be argued that wider intervals give less confidence to each single value of a fuzzy value: an age 

interval as 20 – 40 would make less credible every single age, 35 for instance. If this is the case, confirmed by the 

osteological method used to determine the age interval, the top value of the reliability function should be lowered 

accordingly. But with no other information, all values should have equal, and top, reliability, as we suggest.  

This argument possibly derives from a misunderstanding between the probability of a single value, which is 

lower if more cases are possible, and the fuzzy reliability of each single case, which is not influenced by the number of 

them since there is no constraint of adding up to 1. This is the reason why we use this approach and not a probabilistic 

one: from a probabilistic point of view, the probability of an exact value is zero, as it is well known, even if an exact 

value, perhaps unknown to us, should have existed. So in this context archaeology does not need to deal with low 

probability figures, but with “exact” figures having a different reliability, to establish archaeological inference knowing 

how reliable they are. 

Concluding this paragraph on the evaluation of the fuzzy reliability coefficients, we want to underline that the 

subjective character of their choice has ultimately emerged. In our opinion, however, this is their strength and not their 

weakness: it has been definitely proved that any attempt to construct a completely deterministic model, which should 

give archaeological results only by means of computations, is fallacious. Subjective, in this meaning, differs from 

arbitrary, and is strictly related to the concept as used in De Finetti (1970) or in Savage (1972), who prefers the term 

personalistic to denote this approach. 

 

6. Operating in the database with fuzzy entities  

To store the data in a database, it is necessary to create special data types corresponding to fuzzy entities, that is fuzzy 

labels and fuzzy values, and to give rules to process them. Since these have already been defined in Crescioli, D’Andrea 

and Niccolucci (in press), we refer to that paper for a more detailed description.  

As noted before, a fuzzy label is an array of couples formed by a label, that is a nominal element, and a number 

in [0, 1]. The nominal elements are chosen from the common domain, so different instances of the fuzzy label consist of 

the same nominal elements with possibly different coefficients. If we agree to put always the nominal elements in the 

same (not relevant) order in the array, a fuzzy label is characterized by the domain, that is the common set of the n 

possible labels, and a n-ple of numbers, differently valued for each instance of the label. In our case, the fuzzy gender is 

therefore characterized by the domain, the two labels “male” and “female”, and a couple of numbers as (0.3, 0.7), 

having conventionally agreed that the first on refers to “male” and the second one to “female”. 

The definition of each member of the data type FUZZY_LABEL, as FUZZY_GENDER, requires therefore to store 

somewhere the domain, that is {“male”, “female”} in this case, and then consists of a one-dimensional array of real 

numbers. 

For fuzzy values, the necessary function is approximated by a piecewise linear function, so that only the corner 

points need to be stored. Previous models used only “trapezoidal” functions as the ones shown in the above figures, but 
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this limits the field of application, as shown in Crescioli, D’Andrea and Niccolucci (in press): our models puts no such 

restriction.  

So, the FUZZY_VALUE data type consists of a two-dimensional array of real numbers. For example, the age 

interval 20 – 40 is represented as the array {(15, 0), (20, 1), (40, 1), (45, 0)} according to the assignment of the fuzzy 

age function stated in paragraph 5; these values are, in fact, the coordinates of the corner points of the graph of the 

reliability function. 

It may be useful to define constants for any type of fuzzy data, which are stored in a separate table. Due to 

SQL naming rules, and to make easier to use constants in queries, they are denoted as functions with no parameter, for 

instance YOUNG(). 

To determine the values of these fuzzy constants, we refer to commonly used ranges by anthropologists, so 

that, for instance, YOUNG() means an age included within 15 and 20 years, with a slack of 2 years before and after. 

Naturally, constants may be modified or be defined with other values, so long as their value is clearly stated.  

Finally, we need to define the operator fuzzy equal, denoted with ~. This follows the definition given in 

paragraph 4, and the result is a number in [0, 1].  Therefore, the comparison between two homogeneous fuzzy entities or 

a fuzzy entity and a constant will produce a list of numbers, corresponding to the values of fuzzy equality for different 

instances. For instance, the comparison between the attribute FUZZY_AGE and the fuzzy constant YOUNG() will give a list 

of numbers, each representing the similarity of the fuzzy age of each record to the constant (fuzzy) value chosen for 

YOUNG(). A dummy result for the query FUZZY_AGE ~ YOUNG() is represented in table 3, where we put the descriptions 

instead of the values of fuzzy entities to ease readability. 

Age interval 

(osteological) 

Possible age range 

(fuzzy) 

Young constant Result of 
FUZZY_AGE ~ YOUNG() 

10 – 18  8 – 20  15 – 20 1 

22 – 30  20 – 32   0.5 

40 – 48 38 – 50   0 

22 – 38 18 – 42   0.666 

22 – 22  22  0 

…   … 

Table 3. Results of FUZZY_AGE ~ YOUNG() (example) 

 

The apparently counter-intuitive result that 22 – 30 is “less similar” to YOUNG than 22 – 38 is a consequence 

of the statistical nature of age ranges and is perfectly coherent with the fuzzy treatment of data, as already noticed in 

paragraph 4. 

Fuzzy counting, as defined in paragraph 4, does not require any special function, it simply uses SUM. 

 

7. Implementing the fuzzy database 

Implementing the fuzzy database requires an extensible DBMS. We chose for this PostgreSQL, a RDBMS available 

under Linux operating system, since it is fully relational, it is free software and is customisable, in the sense that new 

data types, functions and operators can be added to the standard ones.  
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PostgreSQL can be queried within a terminal window, using psql, a command line SQL environment with 

standard features. In our case we used psql to create the new data types, to define the database structure and to load the 

data, which were available and had previously been typed, verified and converted to text format. Any software can be 

used for this, and we did not develop a graphical interface because we did not need it to input the data, as direct 

conversion was quicker. Data were then manipulated to give expressions as the following: 
INSERT INTO TOMB VALUES(85, 4012, 'Maisto', 'Cappuccina', 'FALSE', 'TILES', 40, 216, 70, 'SE-NW', 

'FALSE', 'M','', '{0.9, 0.1}', 'A', '46-52; 40-45', '{{38.75, 0}, {40, 1}, {45, 1}, {45.45, 0.64}, 
{46, 1}, {52, 1}, {53.5, 0}}', '1st quarter 3rd cent. BC', '{{-285, 0}, {-300, 1}, {-275, 1}, {-260, 
0}}', 'TRUE', 'SUPINE', 'INHUMATION'); 

The above SQL expression assigns values to all the fields of the record, most of which are not fuzzy and have 

not been dealt with in the present paper. TOMB is the name given to the table, values in bold refer to fuzzy attributes and 

italics to the corresponding “original” expression, which are kept into the database for comparison. In this case, the 

(osteological) gender was M for “male”; the (osteological) age, according to the two different methods, consisted of the 

two distinct, not overlapping intervals 46 – 52 and 40 – 45 (a contradiction if manipulated with traditional methods and 

also impossible to manage with previous fuzzy database models), and the chronology was rendered as explained above. 

Creating table TOMB required the previous definition of the fuzzy data types, which was accomplished thanks to the psql 

command CREATE TYPE that allows the definition of personalized data types. 

In a similar way the table GRAVEGOODS was created with data concerning grave-goods. 

The constants are inserted into the table CONSTANTS and then they are used to create functions and operators, as 

fuzzy equality  ~ . This operator is based on the function f_equal(x,y), the only piece of software written in C to make 

computation quicker, and it is computed according to the definition given in paragraph 4. It has been introduced in order 

to allow an expression of the form f_age ~ ADULT(), which is much easier to understand than the equivalent (and 

cumbersome) expression f_equal(f_age,'{{16,0},{21,1},{40,1},{45,0}'). 

 

8. The web interface to the database 

Apart from data input, every search on the database may be performed using a web interface, which accesses the 

database locally or remotely, via a local network or the Internet. 

By the way, a similar interface could be developed for any database (regardless of the presence of fuzzy 

attributes) and would make working with the data easier and quicker. Since it is based on a powerful RDBMS as 

PostgreSQL, it has also many processing advantages on commercial programs as Access or Filemaker. 

The installation requires a Linux-powered server; however, since no graphical interface is required on the 

server, almost any PC may do the job, even an older model which otherwise would be substituted with a newer one for 

everyday work and then, perhaps, stay abandoned in the attic to cover with dust: for instance, we tested an old laptop 

with a Pentium 166Mhz and 16M RAM and it worked flawlessly. 

Using the web interface, connection to the database requires only to use of a web browser as Netscape or 

Internet Explorer and the most common operations, as simple queries or browsing the archive using pre-prepared forms 

(see figure 9, 10 and 11) that make the job quick and easy. For the future, more web pages are planned to accomplish 

other search functions. 
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Figure 9. Form used to set query conditions, with some fields selected for display and one condition set on property. 

 
Figure 10. Result of previous query. For space reasons, the list has been cut. Tomb numbers link to the full record. 

 
Figure 11. Tomb record, accessed from the previous list or directly selecting the number. 

The forms have been written in PHP3, another freely available software module that has a nice interface with 

PostgreSQL and generates HTML pages that can be saved by the user with the “Save as” function of the browser for 

off-line use. This is another strong point for the choice of this RDBMS. 

The database containing the case study data can be actually accessed via Internet using the web interface. Since 

this web publication is experimental and aimed only at an illustration of the present paper, the actual URL may vary in 
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the future, so interested visitors are advised to ask the authors for the current address of the page, from where it is 

possible to download the fuzzy functions as well. 

 

9. Archaeological application to the case study 

It might be reasonable to ask, at this point, what is the impact on archaeological research of all the machinery set up in 

previous paragraphs. Even if the present paper aims at contributing at a methodological level, we present in this last 

paragraph some evidence of the results that can be obtained using fuzzy models. 

Among the information obtained from the “archaeology of the death”, data on demography are traditionally 

considered as “natural” or biological: However, as d’Agostino (1985:52) noted, also anthropological information must 

be interpreted within the archaeological framework, since the definition of age classes and male or female roles, only 

apparently objective, must be always referred to the social context in which it originated. Thus, demographic data 

cannot be mechanically taken into account, basing only on sociological assumptions. On the contrary, they should 

always be compared with information derived from the analysis of funerary customs, in order to avoid to overimpose 

categories deduced from the “community of the alive” on the “world of the dead”. 

Within demographic applications to cemetery interpretation, two criteria are particularly significant to verify 

how much the funerary sample is representative (d’Agostino 1990). 

The first one is based on the ratio between the number of adults and the number of children and on the ratio 

between the number of males and the number of females: each of these ratios, for pre-industrial societies, should be 

approximately equal to 1 (Weiss 1973). When one of the sampled values is substantially different from this model, it 

may be concluded that the funerary sample is not representative of all the components existing in the community: in this 

case the sample of tombs may reflect the adoption of discriminating burial practices. 

Another important criterion for cemetery analysis is based on funerary variability (O’Shea 1984). It is based on 

the principle that if social statuses of the deceased are present uniformly, this means that the tomb sample represents 

only one social class of the community. Interpreting funerary variability presents more complex problems than the 

above ratio criterion: indeed, hierarchy may be more or less emphasized according to the economic and social structure 

of the community and becomes inadequate when egalitarian ideologies prevail. 

In the past, applications of statistical methods to the study of funerary custom has been based on a merely 

quantitative logic. Mathematical models have been used to measure “objectively” the richness of a tomb, to determine 

the funerary variability or to identify the social hierarchy on the basis of “energy expenditure” (on the subject see 

Cuozzo 1994:268; Cuozzo 1996). We suggest to use, instead, fuzzy logic to estimate how much a funerary sample is 

representative of the community using palaeo-anthropological demographic data. A few examples are given below, and 

we consider this perspective a potentially substantial contribution to carry on an analysis aiming at determining 

horizontal and vertical stratigraphy. Since the age and gender coefficient result from statistical computations on 

osteological parameters, as shown above, an “improper” use of them, or the mechanical assumption that they represent 

an “objective” truth, may lead to an unconscious variation of the real ratios children to adults or males to females, thus 

turning awry any deduction derived from the sample.  

Consider table 4, derived from those published in Serritella (1995:116, 121, 123), counting the occurrences of 

age categories, shown as percentage of the total. The tombs are grouped by modern land owner, which gives a rough 

indication of their space position in the cemetery. In other words, land property, represented in the database with the 

name of the modern owner, is a simple and approximate, but effective, clustering of the tombs. It has been shown by 

Serritella that this grouping reflects significant differences in chronology or rite. 

14 



 

 

Property 

Infant Children 

Young 

Adult 

Elderly 

Indeterminate Total Ratio 

A/(I+C) 

Maisto-Boccia 22.9% 0.0% 54.3% 22.8% 100.0% 2.37 

Rossomando 33.3% 6.7% 53.3%   6.7% 100.0% 1.33 

Tascone-Di Dato 16.0% 0.0% 76.0%   8.0% 100.0% 2.75 

Total 22.7% 1.3% 61.3% 14.7% 100.0% 2.56 

Table 4. Age classes by land property (percentages). Derived from Serritella (1995:116, 121, 123) 

 

Indeterminate gender assignments add up to 15% of the total and thus they may significantly change the 

confidence of the sample: for the second group, assigning all the indeterminate cases to infants or children gives a ratio 

of 1.19, turning this sample into a very representative one. 

Using fuzzy coefficients, we have to introduce the fuzzy age class “Infant or Child”, ranging from 0 to 20 

years, and the class “Adult or Elderly”, ranging from 21 upwards, and compare the data with these two new constants.  

Then we compare Serritella’s results with shown in table 5 and easily obtainable by means of an SQL query on 

the database. 

property Children Adult Ratio A/C 

Maisto-Boccia 43.9% 56.1% 1.28 

Rossomando 45.3% 54.7% 1.21 

Tascone-Di Dato 28.5% 71.5% 2.50 

Total 41.0% 59.0% 1.44 

Table 5. Age classes by land property (percentages) and their ratio, as computed from the fuzzy database 

 

The “Rossomando” and “Maisto-Boccia” groups fit with the model, while “Tascone-Di Dato” does not. The 

latter shows a prevalence of adult burials. 

Considering the male to female ratio, from Serritella’s work we obtain the values shown in table 6 

and from our database the ones shown in table 7. 

Property Male Female Indeterm. Ratio M/F 

Maisto-Boccia 47.4% 42.1% 10.5% 1.13 

Rossomando 75.0% 25.0%   0.0% 3.00 

Tascone-Di Dato 63.1% 31.6%   5.3% 2.00 

Total 58.7% 34.8%   6.5% 1.69 

Table 6. Gender by land property (percentages). Derived from Serritella (1995:116, 121, 123) 
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Property Male Female Ratio M/F 

Maisto-Boccia  53.1% 46.9% 1.13 

Rossomando  70.4% 29.6% 2.38 

Tascone-Di Dato 57.6% 42.4% 1.36 

Total 57.2% 42.8% 1.34 

Table 7. Gender by land property (percentages) as computed from the fuzzy database 

 

From this table, the “Maisto-Boccia” group shows as a representative sample, “Tascone-Di Dato” is less 

representative and “Rossomando” is not.  

Combining the two tables, only “Maisto-Boccia” remains as a representative sample, while the others present 

some discrimination: “Tascone-Di Dato” for age, “Rossomando” for gender. The explanation of this discrimination in 

terms of the social status and age and gender roles can derive only from the investigation of the grave-goods, to 

understand the underlying cultural model of social representation, but this goes beyond the aim of the present paper. 

Comparing our results with Serritella’s, what she suggested is confirmed by us, with a much higher level of confidence 

due to the absence of indeterminate cases that in her tables should suspend every conclusion. 

 

10. Conclusions 

If the model we propose here will be accepted, at least in the negative, if not in the positive, that is provoking greater 

caution when using statistical data in archaeological investigations, giving always for granted the reliability of 

archaeometric data will no more be possible, at least when these are critical for the validity of the interpretation model. 

We hope, however, that our model, together with the computer tools we made available (possibly improved by future 

work) will help research. Computer friendliness and the large availability of software tools had the positive effect of 

spreading their application but allowed, at the same time, their unaware use. Maybe this contribution will increase the 

archaeologists’ awareness that even when using databases, the quickest solution is rarely the cleanest one. 

16 



References 

BARCELÓ,  J. A., 2000. Visualizing what might be: an introduction to virtual reality techniques in archaeology. In J. 

A. Barceló, M. Forte, D. H. Sanders (eds.) Virtual Reality in Archaeology, 9-36. Oxford: Archaeopress (BAR 

International Series 843). 

BUCK, C. E., CAVANAGH, W. G. and LITTON, C.D., 1996. Bayesian Approach to Interpreting Archaeological 

Data. New York: Wiley (Statistics in Practice). 

CUOZZO, M., 1994. Patterns of organisation and funerary customs in the cemetery of Pontecagnano (Salerno) during 

the orientalising period. Journal of European Archaeology 2, 2:263-298. 

CUOZZO, M., 1996. Prospettive teoriche e metodologiche nell'interpretazione delle necropoli: la post-processual 

archaeology. AION ArchStAnt n.s., 3:1-39. 

CRESCIOLI, M., D'ANDREA, A. and NICCOLUCCI, F., in press. A GIS-based analysis of the etruscan cemetery of 

Pontecagnano using fuzzy logic, in Lock G.R. (ed.), Beyond the Map: Archaeology and Spatial Technologies, 

European University Centre for Cultural Heritage, Ravello, Italy, October 1-2 1999. Amsterdam: IOS Press. 

D’AGOSTINO, B., 1985. Società dei vivi, comunità dei morti: un rapporto difficile, DialArch 1.3, III s.:47-58. 

D’AGOSTINO, B. 1990. Problemi di interpretazione delle necropoli, in R. Francovich and D. Manacorda (eds.), Lo 

scavo archeologico dalla diagnosi all’edizione, III ciclo di lezioni sulla Ricerca applicata in Archeologia 

Certosa di Pontignano (Siena), 6-18 novembre 1989, 401-420. Firenze: All’insegna del giglio. 

D’ANDREA, A., 1999. Il GIS nella produzione delle carte dell’impatto archeologico: l’esempio di Pontecagnano. 

Archeologia e Calcolatori 10:227-237. 

DELICADO, P., 1999. Statistics in Archaeology: New Directions. In J. A. Barcelò, I. Briz and A. Vila (eds.), New 

Techniques for Old Time, Proceedings of the CAA98 Conference, 29-37. Oxford: Archaeopress (BAR 

International Series 757). 

DE FINETTI, B., 1970. Teoria delle Probabilità. Sintesi introduttiva con appendice critica, Torino: Einaudi. English 

translation: Probability thory: A Critical Introductory Treatment, New York: Wiley, 1974. 

HARRIS, T. M. and LOCK , G. R., 1995. Toward an evaluation of GIS in European archaeology. The past, present and 

future of the theory and applications. In G. Lock and Z. Stancic (eds.), Archaeological and Geographical 

Information Systems: a European Perspective, 349-365. London: Taylor & Francis. 

HODDER, J., 1982. Symbols in action. Cambridge: Cambridge University Press. 

MOOD, A. M., GRAYBILL, F. A. and BOES, D. C., 1979. Introduction to the Theory of Statistics, New York: 

McGraw-Hill International Edition. 

MOSCATI, P., 1996. Archeologia Quantitativa: Nascita, sviluppo e "crisi". Archeologia e Calcolatori 7:579-590.  

O’SHEA, J., 1984. Mortuary variability. New York: Academic Press. 

PETRONE, P. P., 1995. Analisi paleodemografica e paleopatologica delle tombe in proprietà Rossomando. In Serritella 

1995, Appendix I:129-134.  

SAVAGE, L. J., 1972. The Foundation of Statistics. New York: Dover (second edition). 

SCARSINI, C. and BIGAZZI, R., 1995. Studio antropologico dei resti umani. In Serritella 1995, Appendix II:135-148. 

SERRITELLA, A., 1995. Pontecagnano. II.3. Le nuove aree di necropoli del IV e III sec. a. C.,  Annali del 

Dipartimento di studi del Mondo Classico e del Mediterraneo antico dell’Istituto Universitario Orientale, 

Quaderno n. 9, Napoli. 

VOORRIPS, A., 1996. Information Science in Archaeology: a Short History and Some Recent Trends. Archeologia e 

Calcolatori 7:303-312.  

17 



18 

YAGER, R. R. and FILEV, D. P., 1994. Essentials of Fuzzy Modeling and Control J. Wiley & Sons, New York. 

WEISS, K. M. 1973. Demographic Models for Anthropology, Washington: Memoirs of the Society for American 

Archaeology 27. 

WILCOCK, J. D.,1999. Getting the Best Fit? 25 Years of Statistical Techniques in Archaeology. In L. Dingwall, S. 

Exon, V. Gaffney, S. Laflin, M. Van Leusen (eds.), Computer Applications and Quantitative Methods in 

Archaeology 1997, 19-27. Oxford: Archaeopress (BAR International Series 750). 


